

NORTH CAROLINA Department of Transportation

Breaking Cylinder Piles - Rodanthe Bridge

Tom Santee, NCDOT ERO Geo Engineer

Project Overview

Raleigh

Rodanthe

3

Breaking Cylinder Piles - Rodanthe Bridge

Typical 54 Inch Diameter Cylinder Pile Bent

Breaking Cylinder Piles - Rodanthe Bridge

Cast at **Coastal Precast Systems** in Chesapeake, VA

Pre-stressed (cast in a single segment)

Lengths varied – generally 150 feet +-

- Dynamic Pile Testing performed at each bent
- Factored Design Loads ranged from 665 to 815 tons (1330 to 1630 kips)
- Required driving resistances generally around 2250 to 2500 kips
- Typical final tip elevations -125 to -135 feet
- Long drive times (4000 blows +-)

Breaking Cylinder Piles - Rodanthe Bridge

STGEC Daytona Beach - Oct 2022

9

Means and Methods

- Temporary Work Platform
 - Rail System
 - Overhead Gantry Cranes
 - Platforms for Crawler Cranes
 - Remove at back and reinstall at front
- Start at South Terminus Move North
- Later add second temporary work platform at North Terminus – Move South

Breaking Cylinder Piles - Rodanthe Bridge

- Use Overhead Gantry Cranes to unload and transport cylinder piles
- Place in "Flipper"
- Attach and lift to vertical with crawler crane
- Set in template and drive
- Drive remaining cylinder piles
- Jump to next bent and repeat
- Set girders/pour deck 2 to 4 spans behind

Breaking Cylinder Piles - Rodanthe Bridge

Breaking Cylinder Piles - Rodanthe Bridge

Means and Methods

Getting through D to VD soil stratum

- Plan #1 Steel casings and excavation
 - Set pile in casing
 - Drive
 - Remove and reuse casing
 - Abandoned concept early after award

Getting through D to VD soil stratum

- Plan #2
 - Jet
 - Revised permits
 - Abandoned after a few attempts
 - Could not meet permit requirements economically and/or in a timely fashion (?????)

Getting through D to VD soil stratum

– Plan #3 – Just stand them and drive them

- At South Terminus
 - Success
- At North Terminus
 - Almost immediately broke a production pile

Breaking Cylinder Piles - Rodanthe Bridge

Bent 101, Pile 1

Bent 101, Pile 1

- Drove to tip elevation of –98.7 feet
- Damage noted by PDA at elevation -14 to -18 feet during last 6 inches of drive
- BTA values 78 to 82%

Breaking Cylinder Piles - Rodanthe Bridge

Breaking Cylinder Piles - Rodanthe Bridge

Breaking Cylinder Piles - Rodanthe Bridge

Bent 101, Pile 1

- Is it really damaged?
- Can we salvage it?
- DB Team elected to visually inspect

Cleaned out inside and dropped down a camera

Breaking Cylinder Piles - Rodanthe Bridge

Image 1 taken at approximate elevation -14ft. Vertical and horizontal cracking with . Water intrusion is evident.

Breaking Cylinder Piles - Rodanthe Bridge

Image 2 taken at approximate elevation -15ft to -16ft. Multiple reinforcing strands are exposed. Strands appear to have shallow cover. Water intrusion evident.

Breaking Cylinder Piles - Rodanthe Bridge

Image 3 taken at approximate elevation -17ft.

Breaking Cylinder Piles - Rodanthe Bridge

Image 4 taken at approximate elevation -18ft to -19ft.

Multiple reinforcing strands and spirals exposed.

Unable to excavate lower than this elevation with current equipment setup.

Bent 101, Pile 1

- The fix...this pile was on land

- Dug a hole
- Cut off the pile
- Drove 30 inch square PCP
- Built pile footing
- Added a column to the bent cap

Breaking Cylinder Piles - Rodanthe Bridge

And then...

- Broke Bent 100, Pile 1
 - Similar to Bent 101, Pile 1
 - Same Fix
- Started to consider modifications to installation procedure
 - Slickcoat inside of cylinder pile No noticeable difference seen in driving
 - Settled on a Pre-drill Methodology

Pre-drill Methodology

- Stand and drive each pile
- If blows per foot and stroke exceed specified limit
 - Pre-drill (36 inch diameter flight auger) through pile to loosen plug
 - Continue below pile tip 15 feet +-
- Continue driving the pile
- Repeat pre-drilling as needed

Breaking Cylinder Piles - Rodanthe Bridge

Breaking Cylinder Piles - Rodanthe Bridge

Cutting Head

Typical 36 inch diameter flight

Breaking Cylinder Piles - Rodanthe Bridge

Cutting head with steel wire and pre-stress strand

Pre-drill Methodology

- There was a learning curve
- Modifications to blows per foot (reduction in limits) occurred
- Lost augers/snapped connections
- Added significant time to installation
- Not all piles needed pre-drilling

Summary

		54 CCP Inch	36x1.25 SPP	
Bent No.	Pile No.	(ft)	Elevation (ft)	
37	2	-72	-145	
39	1	-87	-143	
68	1	-95	-144	
77	3	-124	-174]
94	2	-108	-149	
94	3	-73	-143	
96	1	-90	-151	
96	2	-73	-150	
100	1	-95	N/A	30 inch sq PCP and footing
101	1	-99	N/A	30 inch sq PCP and footing

10 total with breaks in middle third

Some others had apparent damage near the toe - accepted based on further analysis

The fix for the bents in the water

- Drove 36x1.25 open end steel pipe pile through center of the concrete cylinder pile
- Steel pipe pile driven out the bottom and achieved the RDR
- Cylinder pile left in place
- Annulus between two piles was grouted to required elevation
- Pour concrete plug and reinforcing steel in steel pipe pile to required elevation

Breaking Cylinder Piles - Rodanthe Bridge

Thank you...

